Tertiary amines react with organic thiocyanates as follows, regardless of the proportions of the components:

$RSCN + R_3N = [R_3NR][NCS-].$

The symmetrical form of the conductivity isotherm, quoted by the above authors in connection with the ethyl thiocyanate-pyridine system, is seen by the present author as further evidence for this scheme. The sharp maximum at 50 mole % corresponds to the 1:1 ionic compound. Because of the low viscosity of mixtures of the system, their electrical conductivity isotherm does not have a minimum, as is often observed when interaction between components brings about a steep rise of viscosity⁵.

SUMMARY

- In binary systems formed by benzyl thiocyanate with anilide, pyridine, and piperidine, two compounds in which the thiocyanate is combined with the amine in 1:1 and 1:2 ratios are formed, depending on the composition of the mixture.
- 2. Property-composition diagrams with singular points are obtained not only when the components interact completely to form one undissociated compound, but also when reaction is incomplete or in a system when two or more compounds are formed simultaneously.
- S. P. Miskidzh'yan, Zhur. Obshch. Khim., <u>26</u>, 1046 (1956);
 <u>27</u>, 1755 (1957); <u>28</u>, 276 (1958); Zhur. Fiz. Khim., <u>33</u>, 1610 (1959); <u>33</u>, 2002 (1959); <u>34</u>, 157 (1960); <u>34</u>, 802 (1960);
 <u>34</u>, 2661 (1960) [Russ.J. Phys. Chem., 76 (1959); 257 (1959);
 <u>71</u> (1960); 382 (1960); 1253 (1960)]; S.S. Kirilyuk and S.P. Miskidzh'yan, Zhur. Fiz. Khim., <u>33</u>, 1918 (1959); <u>33</u>, 2786 (1959) [Russ.J. Phys. Chem., 220, 629 (1959), and others.
- L.L.Konovalova and V.F.Ust'-Kachkintsev, Zhur. Obshch. Khim., <u>30</u>, 246 (1960).
- M.I. Usanovich and E.A. Bekturov, Izv. Vys. Ucheb. Zaved., Khim.i Khim. Tekhnol., <u>3</u>, 837 (1960); <u>4</u>, 374 (1961); <u>4</u>, 574 (1961).
- 4. N.A. Menshutkin, Zhur.Russ.Fiz.-Khim.Obshch., <u>27</u>, 137 (1895).
- N.S.Kurnakov, "Sobranie Izbrannykh Rabot" (Selected Papers), Vol.1, GONTI, 1939.
- 6. N.A. Trifonov, Izv. Permsk. Biol. Nauch. Inst., 7 (1931).
- I.N. Bachter, I. Cymerman, et al., Chem. Zentr., <u>129</u>, 4158 (1958); Yanogimoto, Referat. Zhur. Khim., No.15, 46311 (1956).

Lvov Medical Institute

Received 26th February 1962

THE COMPRESSIBILITY OF METALS

V.V.Demchenko

The existing methods for the calculation of the compressibility of a metal, which are based on the Thomas-Fermi statistical model¹ or the electronic theory of metals², show satisfactory agreement with experimental data only for alkali metals. The compressibility of a metal is believed to be due to the compressibility of the valence electrons of its atoms ^{1,2}, that of the metal ions being practically zero ^{1,2}. On this basis it is possible to obtain simply an approximate formula for the calculation of the compressibility of metals. We shall employ the concept of the volume V of the valence electrons, defined as the difference between the volume of the atom $V_a = (2R_a)^3$ and the volume of the ion $V_1 = (2R_1)^3$:

$$V = 8 \left(R_a^3 - R_i^3 \right), \tag{1}$$

The concept of the volume of valence electrons has been used by a number of authors for the calculation of various properties of metals³⁻⁵.

We have the following expression for the pressure of valence electrons⁶:

$$p = \frac{(ze)^3}{2} \frac{d}{dV} (1/C),$$
 (2)

where $e = 4.8 \times 10^{-10}$ CGSE, z is the number of valence electrons per atom, and C their capacitance, which for a given shape of an object⁹ is proportional to its linear dimensions⁶:

 $C = R = \frac{V''_{*}}{2}.$ (3)

Thus we obtain for the pressure

$$p = \frac{(ze)^3}{3} V^{-4/4}.$$
 (4)

From Eqns. (4) and (1), we obtain the following final equation for the compressibility of a metal:

$$\kappa = -\frac{1}{V} \frac{dV}{dp} = \frac{36 (R_a^3 - R_1^3)^{4/a}}{(ze)^a}.$$
 (5)

Eqn. (5) shows that $\kappa = 0$ when $R_a = R_i$, *i.e.* the compressibility of the metal ions is zero. It is interesting that the electronic theory of metals and the Thomas-Fermi statistical model predict different modes of variation of κ with atomic radius: thus according to the first the compressibility is proportional to R_a^5 , ² and according to the second it is proportional to $R_a^{4,1}$ Eqn. (5) leads to a variation of κ with R_a similar to that derivable from the Thomas-Fermi model.

- Eqn. (5) is approximate, but, as can be seen from the Table, it leads to satisfactory agreement with the experimental values of κ for a large number of metals. The Table compares the values of $\kappa \times 10^{12}$ bar⁻¹ calculated from Eqn. (5) with experimental data; a further comparison is made with κ for a number of metals derived on the basis of

Metal	K (Ref. 5)	K (expt.)	' <i>к</i> 1	K2	Metal	K (Ref. 5)	K (expt.)
Li	. 8.30	8 87	_	4 80	Zn	1 40	1 72
Na	16.30	15.90	10.40	13.30	Cd	1.63	2.30
K	37,60	37.50	24.20	37.80	Go	1.30	1.41
Rb	47.80	53,10	32.20	53.00	Sn	1.63	1.92
Cs	63,50	71.50	42.90	80.50	Pb	2.20	2.42
Mg	2.35	3.01	1.69		Fe	0.58	0,60
Ca	4.98	5,82	3.80	-	Ni	0,60	0.54
Sr	6.86	8.38	5.42	- 1	Mn	0.81	0.81
Ba	9.22	10.40	6.39	-	Cr	0.66	0,62
Be	0.63	0.79	-	-	Co	0.62	0.55